DNMT3B overexpression contributes to aberrant DNA methylation and MYC-driven tumor maintenance in T-ALL and Burkitt’s lymphoma

نویسندگان

  • Candace J. Poole
  • Wenli Zheng
  • Atul Lodh
  • Aleksey Yevtodiyenko
  • Daniel Liefwalker
  • Honglin Li
  • Dean W. Felsher
  • Jan van Riggelen
چکیده

Aberrant DNA methylation is a hallmark of cancer. However, our understanding of how tumor cell-specific DNA methylation patterns are established and maintained is limited. Here, we report that in T-cell acute lymphoblastic leukemia (T-ALL) and Burkitt's lymphoma the MYC oncogene causes overexpression of DNA methyltransferase (DNMT) 1 and 3B, which contributes to tumor maintenance. By utilizing a tetracycline-regulated MYC transgene in a mouse T-ALL (EμSRα-tTA;tet-o-MYC) and human Burkitt's lymphoma (P493-6) model, we demonstrated that DNMT1 and DNMT3B expression depend on high MYC levels, and that their transcription decreased upon MYC-inactivation. Chromatin immunoprecipitation indicated that MYC binds to the DNMT1 and DNMT3B promoters, implicating a direct transcriptional regulation. Hence, shRNA-mediated knock-down of endogenous MYC in human T-ALL and Burkitt's lymphoma cell lines downregulated DNMT3B expression. Knock-down and pharmacologic inhibition of DNMT3B in T-ALL reduced cell proliferation associated with genome-wide changes in DNA methylation, indicating a tumor promoter function during tumor maintenance. We provide novel evidence that MYC directly deregulates the expression of both de novo and maintenance DNMTs, showing that MYC controls DNA methylation in a genome-wide fashion. Our finding that a coordinated interplay between the components of the DNA methylating machinery contributes to MYC-driven tumor maintenance highlights the potential of specific DNMTs for targeted therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas.

DNA cytosine methylation is an epigenetic modification involved in the transcriptional repression of genes controlling a variety of physiological processes, including hematopoiesis. DNA methyltransferase 1 (Dnmt1) is a key enzyme involved in the somatic inheritance of DNA methylation and thus plays a critical role in epigenomic stability. Aberrant methylation contributes to the pathogenesis of ...

متن کامل

Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis.

DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced ly...

متن کامل

DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis.

Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the COOH-terminal catalytic ...

متن کامل

CpG Island Methylation in a Mouse Model of Lymphoma Is Driven by the Genetic Configuration of Tumor Cells

Hypermethylation of CpG islands is a common epigenetic alteration associated with cancer. Global patterns of hypermethylation are tumor-type specific and nonrandom. The biological significance and the underlying mechanisms of tumor-specific aberrant promoter methylation remain unclear, but some evidence suggests that this specificity involves differential sequence susceptibilities, the targetin...

متن کامل

Antiproliferative Effects of DNA Methyltransferase 3B Depletion Are Not Associated with DNA Demethylation

Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017